Search results
Results from the WOW.Com Content Network
The book also contains the entire code for making a compiler. The back cover offers the original inspiration of the cover design: The dragon is replaced by windmills, and the knight is Don Quixote. The book was published by Addison-Wesley, ISBN 0-201-00022-9.
In computer science, instruction selection is the stage of a compiler backend that transforms its middle-level intermediate representation (IR) into a low-level IR. In a typical compiler, instruction selection precedes both instruction scheduling and register allocation; hence its output IR has an infinite set of pseudo-registers (often known as temporaries) and may still be – and typically ...
First published in 1986, it is widely regarded as the classic definitive compiler technology text. [2] It is known as the Dragon Book to generations of computer scientists [3] [4] as its cover depicts a knight and a dragon in battle, a metaphor for conquering complexity. This name can also refer to Aho and Ullman's older Principles of Compiler ...
Compiler design. Regardless of the exact number of phases in the compiler design, the phases can be assigned to one of three stages. The stages include a front end, a middle end, and a back end. The front end scans the input and verifies syntax and semantics according to a specific source language.
In computer science, a compiler-compiler or compiler generator is a programming tool that creates a parser, interpreter, or compiler from some form of formal description of a programming language and machine. The most common type of compiler-compiler is called a parser generator. [1] It handles only syntactic analysis.
Stage 1: the bootstrap compiler is produced. This compiler is enough to translate its own source into a program which can be executed on the target machine. At this point, all further development is done using the language defined by the bootstrap compiler, and stage 2 begins. Stage 2: a full compiler is produced by the bootstrap compiler.
MLIR (Multi-Level Intermediate Representation) is a unifying software framework for compiler development. [1] MLIR can make optimal use of a variety of computing platforms such as central processing units (CPUs), graphics processing units (GPUs), data processing units (DPUs), Tensor Processing Units (TPUs), field-programmable gate arrays (FPGAs), artificial intelligence (AI) application ...
A multi-pass compiler is a type of compiler that processes the source code or abstract syntax tree of a program several times. This is in contrast to a one-pass compiler, which traverses the program only once. Each pass takes the result of the previous pass as the input, and creates an intermediate output.