enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molar concentration - Wikipedia

    en.wikipedia.org/wiki/Molar_concentration

    Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular, of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter ...

  3. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1mol1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  4. Osmotic concentration - Wikipedia

    en.wikipedia.org/wiki/Osmotic_concentration

    Thus, for every 1 mole of NaCl in solution, there are 2 osmoles of solute particles (i.e., a 1 mol/L NaCl solution is a 2 osmol/L NaCl solution). Both sodium and chloride ions affect the osmotic pressure of the solution. [2] Another example is magnesium chloride (MgCl 2), which dissociates into Mg 2+ and 2Cl − ions.

  5. Equivalent concentration - Wikipedia

    en.wikipedia.org/wiki/Equivalent_concentration

    For example, sulfuric acid (H 2 SO 4) is a diprotic acid. Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: feq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c (H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be called a "2 normal" solution.

  6. Van der Waals constants (data page) - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_constants...

    Van der Waals constants (data page) The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [1] To convert from to , multiply by 100. To convert from to , divide by 10. To convert from to , divide by 1000. a (L 2 bar/mol 2)

  7. Molality - Wikipedia

    en.wikipedia.org/wiki/Molality

    The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]

  8. Avogadro constant - Wikipedia

    en.wikipedia.org/wiki/Avogadro_constant

    The Avogadro constant, commonly denoted N A [1] or L, [2] is an SI defining constant with an exact value of 6.022 140 76 × 10 23 mol1 (reciprocal moles). [3] [4] It is defined as the number of constituent particles (usually molecules, atoms, ions, or ion pairs) per mole and used as a normalization factor in the amount of substance in a sample.

  9. Molar conductivity - Wikipedia

    en.wikipedia.org/wiki/Molar_conductivity

    The molar conductivity of an electrolyte solution is defined as its conductivity divided by its molar concentration. [1][2] where: κ is the measured conductivity (formerly known as specific conductance), [3] c is the molar concentration of the electrolyte. The SI unit of molar conductivity is siemens metres squared per mole (S m 2 mol1). [2]