enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Friedmann equations - Wikipedia

    en.wikipedia.org/wiki/Friedmann_equations

    The density parameter Ω is defined as the ratio of the actual (or observed) density ρ to the critical density ρ c of the Friedmann universe. The relation between the actual density and the critical density determines the overall geometry of the universe; when they are equal, the geometry of the universe is flat (Euclidean).

  3. Scale factor (cosmology) - Wikipedia

    en.wikipedia.org/wiki/Scale_factor_(cosmology)

    Scale factor (cosmology) The expansion of the universe is parametrized by a dimensionless scale factor . Also known as the cosmic scale factor or sometimes the Robertson–Walker scale factor, [1] this is a key parameter of the Friedmann equations. In the early stages of the Big Bang, most of the energy was in the form of radiation, and that ...

  4. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    Flatness problem. The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0 ...

  5. Lambda-CDM model - Wikipedia

    en.wikipedia.org/wiki/Lambda-CDM_model

    The fraction of the total energy density of our (flat or almost flat) universe that is dark energy, , is estimated to be 0.669 ± 0.038 based on the 2018 Dark Energy Survey results using Type Ia supernovae [8] or 0.6847 ± 0.0073 based on the 2018 release of Planck satellite data, or more than 68.3 % (2018 estimate) of the mass–energy density ...

  6. Friedmann–Lemaître–Robertson–Walker metric - Wikipedia

    en.wikipedia.org/wiki/Friedmann–Lemaître...

    Astronomy portal. v. t. e. The Friedmann–Lemaître–Robertson–Walker metric (FLRW; / ˈfriːdmən ləˈmɛtrə ... /) is a metric based on an exact solution of the Einstein field equations of general relativity. The metric describes a homogeneous, isotropic, expanding (or otherwise, contracting) universe that is path-connected, but not ...

  7. Deceleration parameter - Wikipedia

    en.wikipedia.org/wiki/Deceleration_parameter

    e. The deceleration parameter in cosmology is a dimensionless measure of the cosmic acceleration of the expansion of space in a Friedmann–Lemaître–Robertson–Walker universe. It is defined by: where is the scale factor of the universe and the dots indicate derivatives by proper time. The expansion of the universe is said to be ...

  8. Freedman–Diaconis rule - Wikipedia

    en.wikipedia.org/wiki/Freedman–Diaconis_rule

    In statistics, the Freedman–Diaconis rule can be used to select the width of the bins to be used in a histogram. [1] It is named after David A. Freedman and Persi Diaconis. For a set of empirical measurements sampled from some probability distribution, the Freedman–Diaconis rule is designed approximately minimize the integral of the squared ...

  9. Einstein–de Sitter universe - Wikipedia

    en.wikipedia.org/wiki/Einstein–de_sitter_universe

    The Einstein–de Sitter universe is a model of the universe proposed by Albert Einstein and Willem de Sitter in 1932. [1] On first learning of Edwin Hubble's discovery of a linear relation between the redshift of the galaxies and their distance, [2] Einstein set the cosmological constant to zero in the Friedmann equations, resulting in a model of the expanding universe known as the Friedmann ...