Search results
Results from the WOW.Com Content Network
The concentration of hydrogen ions and pH are inversely proportional; in an aqueous solution, an increased concentration of hydrogen ions yields a low pH, and subsequently, an acidic product. By definition, an acid is an ion or molecule that can donate a proton, and when introduced to a solution it will react with water molecules (H 2 O) to ...
pH values can be measured in non-aqueous solutions, but they are based on a different scale from aqueous pH values, because the standard states used for calculating hydrogen ion concentrations are different. The hydrogen ion activity, a H +, is defined [21] [22] as:
C A is the analytical concentration of the acid and C H is the concentration the hydrogen ion that has been added to the solution. The self-dissociation of water is ignored. A quantity in square brackets, [X], represents the concentration of the chemical substance X. It is understood that the symbol H + stands for the hydrated hydronium ion.
C A is the analytical concentration of the acid, C H is the analytical concentration of added hydrogen ions, β q are the cumulative association constants. K w is the constant for self-ionization of water. There are two non-linear simultaneous equations in two unknown quantities [A 3−] and [H +]. Many computer programs are available to do ...
Quinones form a quinhydrone cocrystal by formation of hydrogen bonding between ρ-quinone and ρ-hydroquinone. [3] An equimolar mixture of ρ-quinones and ρ-hydroquinone in contact with an inert metallic electrode, such as antimony, forms what is known as a quinhydrone electrode. Such devices can be used to measure the pH of solutions. [4]
Express each concentration value as the ratio c/c 0, where c 0 is the concentration in a [hypothetical] standard state, with a numerical value of 1, by definition. [19] Express the concentrations on the mole fraction scale. Since mole fraction has no dimension, the quotient of concentrations will, by definition, be a pure number.
The glass electrode for measuring the pH has a glass bulb specifically designed to be selective to hydrogen-ion concentration. On immersion in the solution to be tested, hydrogen ions in the test solution exchange for other positively charged ions on the glass bulb, creating an electrochemical potential across the bulb.
where is the value of the analytical concentration of the acid. When all the quantities in this equation are treated as numbers, ionic charges are not shown and this becomes a quadratic equation in the value of the hydrogen ion concentration value, [].