Search results
Results from the WOW.Com Content Network
pH values can be measured in non-aqueous solutions, but they are based on a different scale from aqueous pH values, because the standard states used for calculating hydrogen ion concentrations are different. The hydrogen ion activity, a H +, is defined [21] [22] as:
C A is the analytical concentration of the acid and C H is the concentration the hydrogen ion that has been added to the solution. The self-dissociation of water is ignored. A quantity in square brackets, [X], represents the concentration of the chemical substance X. It is understood that the symbol H + stands for the hydrated hydronium ion.
The pH changes relatively slowly in the buffer region, pH = pK a ± 1, centered at pH = 4.7, where [HA] = [A −]. The hydrogen ion concentration decreases by less than the amount expected because most of the added hydroxide ion is consumed in the reaction
The Charlot equation, named after Gaston Charlot, is used in analytical chemistry to relate the hydrogen ion concentration, and therefore the pH, with the formal analytical concentration of an acid and its conjugate base. It can be used for computing the pH of buffer solutions when the approximations of the Henderson–Hasselbalch equation ...
The concentration of hydrogen ions and pH are inversely proportional; in an aqueous solution, an increased concentration of hydrogen ions yields a low pH, and subsequently, an acidic product. By definition, an acid is an ion or molecule that can donate a proton, and when introduced to a solution it will react with water molecules (H 2 O) to ...
In particular, the pH of a solution can be predicted when the analytical concentration and pK a values of all acids and bases are known; conversely, it is possible to calculate the equilibrium concentration of the acids and bases in solution when the pH is known. These calculations find application in many different areas of chemistry, biology ...
In this case H 0 and H − are equivalent to pH values determined by the buffer equation or Henderson-Hasselbalch equation. However, an H 0 value of −21 (a 25% solution of SbF 5 in HSO 3 F) [5] does not imply a hydrogen ion concentration of 10 21 mol/dm 3: such a "solution" would have a density more than a hundred times greater than a neutron ...
Bases are proton acceptors; a base will receive a hydrogen ion from water, H 2 O, and the remaining H + concentration in the solution determines pH. A weak base will have a higher H + concentration than a stronger base because it is less completely protonated than a stronger base and, therefore, more hydrogen ions remain in its solution.