Search results
Results from the WOW.Com Content Network
The hydraulic diameter is the equivalent circular configuration with the same circumference as the wetted perimeter. The area of a circle of radius R is . Given the area of an non-circular object A, one can calculate its area-equivalent radius by setting = or, alternatively:
Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter. By Thales' theorem, this is a right triangle with right angle at B. Let the length of A′B be c n, which we call the complement of s n; thus c n 2 +s n 2 = (2r) 2. Let C bisect the arc from A to B, and let C′ be the ...
Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length. Using the fact that one part of one chord times the other part is equal to the same product taken along a chord intersecting the first chord, we find that (2r − x)x = (y / 2) 2. Solving for r, we find the required result.
The circumference of a circle with radius r is 2πr. The area of a circle with radius r is πr 2. The area of an ellipse with semi-major axis a and semi-minor axis b is πab. The volume of a sphere with radius r is 4 / 3 πr 3. The surface area of a sphere with radius r is 4πr 2.
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
an object of diameter 1 AU (149 597 871 km) at a distance of 1 parsec (pc) Thus, the angular diameter of Earth's orbit around the Sun as viewed from a distance of 1 pc is 2″, as 1 AU is the mean radius of Earth's orbit. The angular diameter of the Sun, from a distance of one light-year, is 0.03″, and that of Earth 0.0003″. The angular ...
The diameter of a circle is exactly twice its radius. However, this is true only for a circle, and only in the Euclidean metric. Jung's theorem provides more general inequalities relating the diameter to the radius.
In the design of windows or doors with rounded tops, c and h may be the only known values and can be used to calculate R for the draftsman's compass setting. One can reconstruct the full dimensions of a complete circular object from fragments by measuring the arc length and the chord length of the fragment. To check hole positions on a circular ...