enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  3. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  4. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    The discrete difference equations may then be solved iteratively to calculate a price for the option. [4] The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a ...

  5. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  6. Difference Equations: From Rabbits to Chaos - Wikipedia

    en.wikipedia.org/wiki/Difference_Equations:_From...

    Other books on similar topics include A Treatise on the Calculus of Finite Differences by George Boole, Introduction to Difference Equations by S. Goldberg, [5] Difference Equations: An Introduction with Applications by W. G. Kelley and A. C. Peterson, An Introduction to Difference Equations by S. Elaydi, Theory of Difference Equations: An Introduction by V. Lakshmikantham and D. Trigiante ...

  7. Von Neumann stability analysis - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_stability_analysis

    A finite difference scheme is stable if the errors made at one time step of the calculation do not cause the errors to be magnified as the computations are continued. A neutrally stable scheme is one in which errors remain constant as the computations are carried forward. If the errors decay and eventually damp out, the numerical scheme is said ...

  8. Difference engine - Wikipedia

    en.wikipedia.org/wiki/Difference_engine

    The London Science Museum's difference engine, the first one built from Babbage's design. It has the same precision on all columns, except in calculating polynomials, the precision on the higher-order columns could be lower. A difference engine is an automatic mechanical calculator designed to tabulate polynomial functions.

  9. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.