Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
Stiffness is the extent to which an object resists deformation in response to an applied force. [ 1 ] The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is.
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
Stiffness depends upon material properties and geometry. The stiffness of a structural element of a given material is the product of the material's Young's modulus and the element's second moment of area. Stiffness is measured in force per unit length (newtons per millimetre or N/mm), and is equivalent to the 'force constant' in Hooke's Law.
Simplified LaCoste suspension using a zero-length spring Spring length L vs force F graph of ordinary (+), zero-length (0) and negative-length (−) springs with the same minimum length L 0 and spring constant. Zero-length spring is a term for a specially designed coil spring that would exert zero force if it had zero length. That is, in a line ...
An ideal constant-force spring is a spring for which the force it exerts over its range of motion is a constant, that is, it does not obey Hooke's law.In reality, "constant-force springs" do not provide a truly constant force and are constructed from materials that do obey Hooke's law.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Flexibility is the inverse of stiffness. For example, consider a spring that has Q and q as, respectively, its force and deformation: The spring stiffness relation is Q = k q where k is the spring stiffness. Its flexibility relation is q = f Q, where f is the spring flexibility. Hence, f = 1/k.