Search results
Results from the WOW.Com Content Network
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: [ 3 ]
If A is an m × n matrix and A T is its transpose, then the result of matrix multiplication with these two matrices gives two square matrices: A A T is m × m and A T A is n × n. Furthermore, these products are symmetric matrices. Indeed, the matrix product A A T has entries that are the inner product of a row of A with a column of A T.
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
where () denotes the matrix transpose. The explicit form that C {\displaystyle C} takes is dependent on the specific representation chosen for the gamma matrices, up to an arbitrary phase factor. This is because although charge conjugation is an automorphism of the gamma group , it is not an inner automorphism (of the group).
Here is the conjugate transpose of V (or simply the transpose, if V contains real numbers only), and I denotes the identity matrix (of some dimension). Comment: The diagonal elements of D are called the singular values of A .
Specifically, the singular value decomposition of an complex matrix is a factorization of the form =, where is an complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, is an complex unitary matrix, and is the conjugate transpose of . Such decomposition ...