Search results
Results from the WOW.Com Content Network
Polynomial remainder theorem. In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials. It states that, for every number any polynomial is the sum of and the product by of a polynomial in of degree less than the degree of In particular, is ...
Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that. and either R = 0 or the degree of R is lower than the degree of B. These conditions uniquely define Q and R ...
is a horizontal line with y-intercept a0. The graph of a degree 1 polynomial (or linear function) f(x) = a0 + a1x, where a1 ≠ 0, is an oblique line with y-intercept a0 and slope a1. The graph of a degree 2 polynomial. f(x) = a0 + a1x + a2x2, where a2 ≠ 0. is a parabola. The graph of a degree 3 polynomial.
The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]
In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule), but the method can be generalized to division by any polynomial.
Given a polynomial p of degree d, the quotient ring of K[X] by the ideal generated by p can be identified with the vector space of the polynomials of degrees less than d, with the "multiplication modulo p" as a multiplication, the multiplication modulo p consisting of the remainder under the division by p of the (usual) product of polynomials.
Sturm's theorem. In mathematics, the Sturm sequence of a univariate polynomial p is a sequence of polynomials associated with p and its derivative by a variant of Euclid's algorithm for polynomials. Sturm's theorem expresses the number of distinct real roots of p located in an interval in terms of the number of changes of signs of the values of ...
The factor theorem is also used to remove known zeros from a polynomial while leaving all unknown zeros intact, thus producing a lower degree polynomial whose zeros may be easier to find. Abstractly, the method is as follows: [3] Deduce the candidate of zero of the polynomial from its leading coefficient and constant term .