Search results
Results from the WOW.Com Content Network
The Fermat test and the Fibonacci test are simple examples, and they are very effective when combined. John Selfridge has conjectured that if p is an odd number, and p ≡ ±2 (mod 5), then p will be prime if both of the following hold: 2 p−1 ≡ 1 (mod p), f p+1 ≡ 0 (mod p), where f k is the k-th Fibonacci number. The first condition is ...
The parameter k determines the accuracy of the test. The greater the number of rounds, the more accurate the result. [6] Input #1: n > 2, an odd integer to be tested for primality Input #2: k, the number of rounds of testing to perform Output: “composite” if n is found to be composite, “probably prime” otherwise
This algorithm is sometimes also known as the crossing number algorithm or the even–odd rule algorithm, and was known as early as 1962. [3] The algorithm is based on a simple observation that if a point moves along a ray from infinity to the probe point and if it crosses the boundary of a polygon, possibly several times, then it alternately ...
Concept. Fermat's little theorem states that if p is prime and a is not divisible by p, then. If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds. If it does not hold for a value of a, then p is composite. This congruence is unlikely to hold for a random a if p is ...
Fermat's little theorem. In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number ap − a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as. For example, if a = 2 and p = 7, then 27 = 128, and 128 − 2 = 126 = 7 × 18 is an integer multiple of 7.
The final digit of a Universal Product Code, International Article Number, Global Location Number or Global Trade Item Number is a check digit computed as follows: [3] [4]. Add the digits in the odd-numbered positions from the left (first, third, fifth, etc.—not including the check digit) together and multiply by three.
The Mersenne number M 3 = 2 3 −1 = 7 is prime. The Lucas–Lehmer test verifies this as follows. Initially s is set to 4 and then is updated 3−2 = 1 time: s ← ( (4 × 4) − 2) mod 7 = 0. Since the final value of s is 0, the conclusion is that M 3 is prime. On the other hand, M 11 = 2047 = 23 × 89 is not prime.
the use of 2 to check whether a number is even or odd, as in isEven = (x % 2 == 0), where % is the modulo operator the use of simple arithmetic constants, e.g., in expressions such as circumference = 2 * Math.PI * radius , [ 1 ] or for calculating the discriminant of a quadratic equation as d = b^2 − 4*a*c