Search results
Results from the WOW.Com Content Network
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 2 , − 8 5 , −8 5 , and 8 −5 .
Note: this continued fraction's rate of convergence μ tends to 3 − √ 8 ≈ 0.1715729, hence 1 / μ tends to 3 + √ 8 ≈ 5.828427, whose common logarithm is 0.7655... ≈ 13 / 17 > 3 / 4 . The same 1 / μ = 3 + √ 8 (the silver ratio squared) also is observed in the unfolded general continued fractions of ...
Calculus. In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: The first terms of the series sum to approximately , where is the natural logarithm and is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it ...
1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series 1 2 + 1 4 + 1 8 + 1 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...
This can be represented by the abbreviated notation 415 / 93 = [4; 2, 6, 7]. (It is customary to replace only the first comma by a semicolon to indicate that the preceding number is the whole part.) Some older textbooks use all commas in the (n + 1)-tuple, for example, [4, 2, 6, 7]. [3] [4]
The sum of the series is approximately equal to 1.644934. [3] The Basel problem asks for the exact sum of this series (in closed form ), as well as a proof that this sum is correct. Euler found the exact sum to be π 2 / 6 {\displaystyle \pi ^{2}/6} and announced this discovery in 1735.
The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...
1/4 + 1/16 + 1/64 + 1/256 + ⋯. Archimedes' figure with a = 3 4 . In mathematics, the infinite series 1 4 + 1 16 + 1 64 + 1 256 + ⋯ is an example of one of the first infinite series to be summed in the history of mathematics; it was used by Archimedes circa 250–200 BC. [1] As it is a geometric series ...