Search results
Results from the WOW.Com Content Network
Analysis of variance. Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures (such as the "variation" among and between groups) used to analyze the differences among means. ANOVA was developed by the statistician Ronald Fisher.
The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean , [1] It shows the extent of variability in relation to the mean of the population. The coefficient of variation should be computed only for data measured on scales that have a meaningful zero (ratio scale) and hence allow relative comparison of two ...
ANOVA gauge R&R. ANOVA gage repeatability and reproducibility is a measurement systems analysis technique that uses an analysis of variance (ANOVA) random effects model to assess a measurement system. The evaluation of a measurement system is not limited to gage but to all types of measuring instruments, test methods, and other measurement systems.
The formula for the one-way ANOVA F-test statistic is =, or =. The "explained variance", or "between-group variability" is = (¯ ¯) / where ¯ denotes the sample mean in the i-th group, is the number of observations in the i-th group, ¯ denotes the overall mean of the data, and denotes the number of groups.
Unbiased estimation of standard deviation. In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the ...
One-way analysis of variance. In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".
The red population has mean 100 and variance 100 (SD=10) while the blue population has mean 100 and variance 2500 (SD=50) where SD stands for Standard Deviation. In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable.
Therefore, a naïve algorithm to calculate the estimated variance is given by the following: Let n ← 0, Sum ← 0, SumSq ← 0. For each datum x: n ← n + 1. Sum ← Sum + x. SumSq ← SumSq + x × x. Var = (SumSq − (Sum × Sum) / n) / (n − 1) This algorithm can easily be adapted to compute the variance of a finite population: simply ...