Search results
Results from the WOW.Com Content Network
The Harris–Benedict equation (also called the Harris-Benedict principle) is a method used to estimate an individual's basal metabolic rate (BMR).. The estimated BMR value may be multiplied by a number that corresponds to the individual's activity level; the resulting number is the approximate daily kilocalorie intake to maintain current body weight.
The Schofield Equation is a method of estimating the basal metabolic rate (BMR) of adult men and women published in 1985. [1] This is the equation used by the WHO in their technical report series. [2] The equation that is recommended to estimate BMR by the US Academy of Nutrition and Dietetics is the Mifflin-St. Jeor equation. [3]
Some of the most popular and accurate equations used to calculate BMR are the original Harris-Benedict equations, the revised Harris-Benedict equations, and the Mifflin St. Jeor equation. [19] The original Harris-Benedict Equations are as follows: BMR (Males) in Kcals/day = 66.47 + 13.75 (weight in kg) + 5.0 (height in cm) - 6.76 (age in years)
Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest. [1] It is reported in energy units per unit time ranging from watt (joule/second) to ml O 2 /min or joule per hour per kg body mass J/(h·kg). Proper measurement requires a strict set of criteria to be met.
It is the equation which is behind the 2005 Dietary Guidelines for Americans and the new food pyramid, MyPyramid. The Institute of Medicine equation uses a different approach to most others. The equation doesn't measure basal metabolic rate, but uses experiments based on doubly labelled water.
Formulas have been devised to estimate energy expenditure in humans, but they may not be accurate for people with certain illnesses [13] [14] [15] or the elderly. [16] Not all formula are accurate in overweight or obese individuals. [17] Wearable devices can help estimate energy expenditure from physical activity but their accuracy varies. [18]
The respiratory quotient (RQ or respiratory coefficient) is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state.
Respirometry depends on a "what goes in must come out" principle. [6] Consider a closed system first. Imagine that we place a mouse into an air-tight container. The air sealed in the container initially contains the same composition and proportions of gases that were present in the room: 20.95% O 2, 0.04% CO 2, water vapor (the exact amount depends on air temperature, see dew point), 78% ...