Search results
Results from the WOW.Com Content Network
Some SI units of volume to scale and approximate corresponding mass of water. To ease calculations, a unit of volume is equal to the volume occupied by a unit cube (with a side length of one). Because the volume occupies three dimensions, if the metre (m) is chosen as a unit of length, the corresponding unit of volume is the cubic metre (m 3).
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Specific volume is inversely proportional to density. If the density of a substance doubles, its specific volume, as expressed in the same base units, is cut in half. If the density drops to 1/10 its former value, the specific volume, as expressed in the same base units, increases by a factor of 10.
Specific volume is the volume occupied by a unit of mass of a material. [1] In many cases, the specific volume is a useful quantity to determine because, as an intensive property, it can be used to determine the complete state of a system in conjunction with another independent intensive variable. The specific volume also allows systems to be ...
It is the same concept as volume percent (vol%) except that the latter is expressed with a denominator of 100, e.g., 18%. The volume fraction coincides with the volume concentration in ideal solutions where the volumes of the constituents are additive (the volume of the solution is equal to the sum of the volumes of its ingredients).
The volume of a n-ball is the Lebesgue measure of this ball, which generalizes to any dimension the usual volume of a ball in 3-dimensional space. The volume of a n -ball of radius R is R n V n , {\displaystyle R^{n}V_{n},} where V n {\displaystyle V_{n}} is the volume of the unit n -ball , the n -ball of radius 1 .
Calculating the volume of fiber ratio in a composite is relatively simple. The volume fiber fraction can be calculated using a combination of weights, densities, elastic moduli, stresses in respective directions, Poisson's ratios, and volumes of the matrix (resin system), fibers, and voids.
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .