Search results
Results from the WOW.Com Content Network
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
The Brønsted–Lowry theory (also called proton theory of acids and bases [1]) is an acid–base reaction theory which was first developed by Johannes Nicolaus Brønsted and Thomas Martin Lowry independently in 1923.
The E and C parameters refer, respectively, to the electrostatic and covalent contributions to the strength of the bonds that the acid and base will form. The equation is -ΔH = E A E B + C A C B + W. The W term represents a constant energy contribution for acid–base reaction such as the cleavage of a dimeric acid or base. The equation ...
Another possibility is the molecular autoionization reaction between two water molecules, in which one water molecule acts as an acid and another as a base. H 2 O + H 2 O ⇌ H 3 O + + HO −. The bicarbonate ion, HCO − 3, is amphoteric as it can act as either an acid or a base: As an acid, losing a proton: HCO − 3 + OH − ⇌ CO 2− 3 ...
The E-C model accommodates the failure of single parameter descriptions of acids and bases. In 1965 Russell S. Drago and Bradford Wayland published the two term equation such that each acid and each base is described by two parameters. [2] Each acid is characterized by an E A and a C A. Each base is likewise characterized by its own E B and C B.
A Lewis base is also a Brønsted–Lowry base, but a Lewis acid does not need to be a Brønsted–Lowry acid. The classification into hard and soft acids and bases ( HSAB theory ) followed in 1963. The strength of Lewis acid-base interactions, as measured by the standard enthalpy of formation of an adduct can be predicted by the Drago–Wayland ...
One use of conjugate acids and bases lies in buffering systems, which include a buffer solution. In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications.
Acids and bases are aqueous solutions, as part of their Arrhenius definitions. [1] An example of an Arrhenius acid is hydrogen chloride (HCl) because of its dissociation of the hydrogen ion when dissolved in water. Sodium hydroxide (NaOH) is an Arrhenius base because it dissociates the hydroxide ion when it is dissolved in water. [3]