Search results
Results from the WOW.Com Content Network
In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat (i.e., the temperature difference, ΔT ). It is used in calculating the heat transfer, typically by convection or phase transition between a ...
The Churchill–Bernstein equation is a correlation and cannot be derived from principles of fluid dynamics. The equation yields the surface averaged Nusselt number, which is used to determine the average convective heat transfer coefficient. Newton's law of cooling (in the form of heat loss per surface area being equal to heat transfer ...
Logarithmic mean temperature difference. In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of ...
The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...
In heat transfer, thermal engineering, and thermodynamics, thermal conductance and thermal resistance are fundamental concepts that describe the ability of materials or systems to conduct heat and the opposition they offer to the heat current. The ability to manipulate these properties allows engineers to control temperature gradient, prevent ...
Heisler chart. In thermal engineering, Heisler charts are a graphical analysis tool for the evaluation of heat transfer in transient, one-dimensional conduction. [1] They are a set of two charts per included geometry introduced in 1947 by M. P. Heisler [2] which were supplemented by a third chart per geometry in 1961 by H. Gröber.
In fluid dynamics, the general equation of heat transfer is a nonlinear partial differential equation describing specific entropy production in a Newtonian fluid subject to thermal conduction and viscous forces: [1][2] where is the specific entropy, is the fluid's density, is the fluid's temperature, is the material derivative, is the thermal ...
Physical law relating heat loss to temperature difference. In the study of heat transfer, Newton's law of cooling is a physical law which states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its environment. The law is frequently qualified to include the condition that ...