enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances. If an object fell 10 000 m to Earth, then the results of both equations differ by only 0.08 %; however, if it fell from geosynchronous orbit, which is 42 164 km, then the ...

  3. Free-fall time - Wikipedia

    en.wikipedia.org/wiki/Free-fall_time

    In other words, the ellipse becomes a line of length . The semi-major axis is half the width of the ellipse along the long axis, which in the degenerate case becomes R / 2 {\displaystyle R/2} . If the free-falling body completed a full orbit, it would begin at distance R {\displaystyle R} from the point source mass M {\displaystyle M} , fall ...

  4. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    For example, as the Earth's rotational velocity is 465 m/s at the equator, a rocket launched tangentially from the Earth's equator to the east requires an initial velocity of about 10.735 km/s relative to the moving surface at the point of launch to escape whereas a rocket launched tangentially from the Earth's equator to the west requires an ...

  5. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s / r is roughly 4 parts in a million.

  7. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    Gravity on the Earth's surface varies by around 0.7%, from 9.7639 m/s 2 on the Nevado Huascarán mountain in Peru to 9.8337 m/s 2 at the surface of the Arctic Ocean. [6] In large cities, it ranges from 9.7806 m/s 2 [ 7 ] in Kuala Lumpur , Mexico City , and Singapore to 9.825 m/s 2 in Oslo and Helsinki .

  8. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.

  9. Speed of gravity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_gravity

    Putting the Sun immobile at the origin, when the Earth is moving in an orbit of radius R with velocity v presuming that the gravitational influence moves with velocity c, moves the Sun's true position ahead of its optical position, by an amount equal to vR/c, which is the travel time of gravity from the sun to the Earth times the relative ...

  1. Related searches how to calculate earth's velocity from gravity and height m to length 1

    equations of gravityinstantaneous velocity equation
    escape velocity of earthgravitational equation examples