Search results
Results from the WOW.Com Content Network
The Newton loop-node method is based on Kirchhoff’s first and second laws. The Newton loop-node method is the combination of the Newton nodal and loop methods and does not solve loop equations explicitly. The loop equations are transformed to an equivalent set of nodal equations, which are then solved to yield the nodal pressures.
Harmonic balance is a method used to calculate the steady-state response of nonlinear differential equations, [1] and is mostly applied to nonlinear electrical circuits. [2] [3] [4] It is a frequency domain method for calculating the steady state, as opposed to the various time-domain steady-state methods.
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =.
Nodal analysis is essentially a systematic application of Kirchhoff's current law (KCL) for circuit analysis. Similarly, mesh analysis is a systematic application of Kirchhoff's voltage law (KVL). Nodal analysis writes an equation at each electrical node specifying that the branch currents incident at a node must sum to zero (using KCL). The ...
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.
Together with Kirchhoff's theorem, it can be used to calculate the number of spanning trees for a given graph. The sparsest cut of a graph can be approximated through the Fiedler vector — the eigenvector corresponding to the second smallest eigenvalue of the graph Laplacian — as established by Cheeger's inequality .
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).