Search results
Results from the WOW.Com Content Network
The presence of an oxygenated atmosphere-hydrosphere surrounding an otherwise highly reducing solid earth is the most striking consequence of the rise of life on earth. Biological evolution and the functioning of ecosystems, in turn, are to a large degree conditioned by geophysical and geological processes.
Our oceans move vast amounts of water, heat, chemicals and microscopic life around the planet - with one ocean current particularity crucial to life on earth. The Atlantic Meridional Overturning ...
Overview of climatic changes and their effects on the ocean. Regional effects are displayed in italics. [1] This NASA animation conveys Earth's oceanic processes as a driving force among Earth's interrelated systems. There are many effects of climate change on oceans. One of the most important is an increase in ocean temperatures.
The water cycle is essential to life on Earth and plays a large role in the global climate system and ocean circulation. The warming of our planet is expected to be accompanied by changes in the water cycle for various reasons. [24] For example, a warmer atmosphere can contain more water vapor which has effects on evaporation and rainfall.
Study of the oceans is critical to understanding shifts in Earth's energy balance along with related global and regional changes in climate, the biosphere and biogeochemistry. The atmosphere and ocean are linked because of evaporation and precipitation as well as thermal flux (and solar insolation).
Ocean deoxygenation is an additional stressor on marine life. Ocean deoxygenation is the expansion of oxygen minimum zones in the oceans as a consequence of burning fossil fuels. The change has been fairly rapid and poses a threat to fish and other types of marine life, as well as to people who depend on marine life for nutrition or livelihood.
While there are many abiotic sources and sinks for O 2, the presence of the profuse concentration of free oxygen in modern Earth's atmosphere and ocean is attributed to O 2 production from the biological process of oxygenic photosynthesis in conjunction with a biological sink known as the biological pump and a geologic process of carbon burial involving plate tectonics.
The surface ocean engages in air-sea interactions and absorbs carbon dioxide (CO 2) from the atmosphere, making the ocean the Earth's largest sink for atmospheric CO 2. Carbon dioxide dissolves in and reacts with seawater to form carbonic acid. Subsequent reactions then produce carbonate (CO 3 2−), bicarbonate (HCO 3 −), and hydrogen (H ...