enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    See motion graphs and derivatives. A large number of fundamental equations in physics involve first or second time derivatives of quantities. Many other fundamental quantities in science are time derivatives of one another: force is the time derivative of momentum; power is the time derivative of energy

  4. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  5. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    Dispersion of waves on water was studied by Pierre-Simon Laplace in 1776. [ 7 ] The universality of the Kramers–Kronig relations (1926–27) became apparent with subsequent papers on the dispersion relation's connection to causality in the scattering theory of all types of waves and particles.

  6. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The graph of the Dirac delta is ... δ is an infinitely differentiable distribution. The first derivative of the ... consider a distribution in which 6/10 of the time ...

  7. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances. Derivatives can be generalized ...

  8. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    velocity is the derivative (with respect to time) of an object's displacement (distance from the original position) acceleration is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time) of an object's position. For example, if an object's position on a line is given by

  9. Group-velocity dispersion - Wikipedia

    en.wikipedia.org/wiki/Group-velocity_dispersion

    The units of group-delay dispersion are [time] 2, often expressed in fs 2. The group-delay dispersion (GDD) of an optical element is the derivative of the group delay with respect to angular frequency, and also the second derivative of the optical phase: