Search results
Results from the WOW.Com Content Network
They were developed by Oliver Heaviside who created the transmission line model, and are based on Maxwell's equations. Schematic representation of the elementary component of a transmission line. The transmission line model is an example of the distributed-element model. It represents the transmission line as an infinite series of two-port ...
Equivalent circuit of a transmission line for the calculation of Z 0 from the primary line constants. The characteristic impedance of a transmission line, , is defined as the impedance looking into an infinitely long line. Such a line will never return a reflection since the incident wave will never reach the end to be reflected.
Unlike the transmission line example, the need to apply the distributed-element model arises from the geometry of the setup, and not from any wave propagation considerations. [3] The model used here needs to be truly 3-dimensional (transmission line models are usually described by elements of a one-dimensional line).
The Transfer Length Method or the "Transmission Line Model" (both abbreviated as TLM) is a technique used in semiconductor physics and engineering to determine the specific contact resistivity between a metal and a semiconductor.
The flange design, inner and outer conductor dimensions are standardized, by EIA, in the RS-225, 50 Ω (ohm), and RS-259, 75 Ω, standards.They are commonly referred to by the inner diameter of the outer conductor in fractional inches.
Transposition is the periodic swapping of positions of the conductors of a transmission line, in order to reduce crosstalk and otherwise improve transmission. In telecommunications this applies to balanced pairs whilst in power transmission lines three conductors are periodically transposed.
Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm. The characteristic impedance of a lossless transmission line is purely real, with no reactive component (see below).
Planar transmission lines are transmission lines with conductors, or in some cases dielectric (insulating) strips, that are flat, ribbon-shaped lines. They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these ...