Search results
Results from the WOW.Com Content Network
"One analogy is to think of helium-4 as ash, and the amount of ash that one forms when one completely burns a piece of wood is insensitive to how one burns it." [16] The resort to the BBN theory of the helium-4 abundance is necessary as there is far more helium-4 in the universe than can be explained by stellar nucleosynthesis. In addition, it ...
The stability of helium-4 is the reason that hydrogen is converted to helium-4, and not deuterium (hydrogen-2) or helium-3 or other heavier elements during fusion reactions in the Sun. It is also partly responsible for the alpha particle being by far the most common type of baryonic particle to be ejected from an atomic nucleus; in other words ...
As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy: 12 6 C + 4 2 He → 16 8 O + γ (+7.162 MeV) Nuclear fusion reactions of helium with hydrogen produces lithium-5, which also is highly unstable, and decays back into smaller nuclei with a half-life of 3.7 × 10 −22 s.
The subsequent nucleosynthesis of heavier elements (Z ≥ 6, carbon and heavier elements) requires the extreme temperatures and pressures found within stars and supernovae. These processes began as hydrogen and helium from the Big Bang collapsed into the first stars after about 500 million years.
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
The other class is a cycle of reactions called the triple-alpha process, which consumes only helium, and produces carbon. [1] The alpha process most commonly occurs in massive stars and during supernovae. Both processes are preceded by hydrogen fusion, which produces the helium that fuels both the triple-alpha process and the alpha ladder ...
(The He-4 nucleus is unusually stable and tightly bound for the same reason that the helium atom is inert: each pair of protons and neutrons in He-4 occupies a filled 1s nuclear orbital in the same way that the pair of electrons in the helium atom occupy a filled 1s electron orbital). Consequently, alpha particles appear frequently on the right ...
Once the helium-3 has been produced, there are four possible paths to generate 4 He. In p–p I, helium-4 is produced by fusing two helium-3 nuclei; the p–p II and p–p III branches fuse 3 He with pre-existing 4 He to form beryllium-7, which undergoes further reactions to produce two helium-4 nuclei. About 99% of the energy output of the sun ...