enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green , who discovered Green's theorem .

  3. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.

  4. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    One easy way to establish this theorem (in the case where =, =, and =, which readily entails the result in general) is by applying Green's theorem to the gradient of . An elementary proof for functions on open subsets of the plane is as follows (by a simple reduction, the general case for the theorem of Schwarz easily reduces to the planar case ...

  5. Folium of Descartes - Wikipedia

    en.wikipedia.org/wiki/Folium_of_Descartes

    The folium of Descartes (green) with asymptote (blue) when = In geometry , the folium of Descartes (from Latin folium ' leaf '; named for René Descartes ) is an algebraic curve defined by the implicit equation x 3 + y 3 − 3 a x y = 0. {\displaystyle x^{3}+y^{3}-3axy=0.}

  6. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The last formula, where summation starts at i = 3, follows easily from the properties of the exterior product. Namely, dx i ∧ dx i = 0. Example 2. Let σ = u dx + v dy be a 1-form defined over ℝ 2. By applying the above formula to each term (consider x 1 = x and x 2 = y) we have the sum

  7. Green formula - Wikipedia

    en.wikipedia.org/wiki/Green_formula

    In mathematics, Green formula may refer to: Green's theorem in integral calculus; Green's identities in vector calculus; Green's function in differential equations; the Green formula for the Green measure in stochastic analysis

  8. Green measure - Wikipedia

    en.wikipedia.org/wiki/Green_measure

    There is an associated Green formula representing suitably smooth functions in terms of the Green measure and first exit times of the diffusion. The concepts are named after the British mathematician George Green and are generalizations of the classical Green's function and Green formula to the stochastic case using Dynkin's formula .

  9. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.