enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    Variations from these ideal conditions affect measured voltage via the Nernst equation. Electrode potentials of successive elementary half-reactions cannot be directly added. However, the corresponding Gibbs free energy changes (∆G°) must satisfy ∆G° = – z FE°,

  3. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  4. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [1] [2] The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage.

  5. Permanganate - Wikipedia

    en.wikipedia.org/wiki/Permanganate

    In a strongly basic or alkaline solution, permanganate(VII) is reduced to the green manganate ion, MnO 2− 4 with an oxidation state of +6. MnO − 4 + e − → MnO 2− 4. In a neutral solution, however, it gets reduced to the brown manganese dioxide MnO 2 with an oxidation state of +4. 2 H 2 O + MnO − 4 + 3 e − → MnO 2 + 4 OH −

  6. Half-reaction - Wikipedia

    en.wikipedia.org/wiki/Half-reaction

    For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH − ions to balance the H + ions in the half reactions (which would give H 2 O).

  7. Solubility chart - Wikipedia

    en.wikipedia.org/wiki/Solubility_chart

    The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.

  8. Frost diagram - Wikipedia

    en.wikipedia.org/wiki/Frost_diagram

    Although nitrous acid is located above nitrate in the redox scale and so is a stronger oxidant than nitrate, the Gibbs free energy of the half-reaction for nitrate reduction is more important (∆G° < 0 indicates an exothermic reaction releasing energy) because of the larger number (n) of electrons transferred in the half-reaction (10 versus 6).

  9. Reducing agent - Wikipedia

    en.wikipedia.org/wiki/Reducing_agent

    In the above equation, the Iron (Fe) has an oxidation number of 0 before and 3+ after the reaction. For oxygen (O) the oxidation number began as 0 and decreased to 2−. These changes can be viewed as two "half-reactions" that occur concurrently: Oxidation half reaction: Fe 0 → Fe 3+ + 3e −; Reduction half reaction: O 2 + 4e − → 2 O 2−