Search results
Results from the WOW.Com Content Network
Wafer fabrication is a procedure composed of many repeated sequential processes to produce complete electrical or photonic circuits on semiconductor wafers in a semiconductor device fabrication process. Examples include production of radio frequency amplifiers, LEDs, optical computer components, and microprocessors for computers. Wafer ...
Wafer backgrinding is a semiconductor device fabrication step during which wafer thickness is reduced to allow stacking and high-density packaging of integrated circuits (IC). ICs are produced on semiconductor wafers that undergo a multitude of processing steps.
Wafer carriers or cassettes, which can hold several wafers at once, were developed to carry several wafers between process steps, but wafers had to be individually removed from the carrier, processed and returned to the carrier, so acid-resistant carriers were developed to eliminate this time consuming process, so the entire cassette with ...
Wafering is the process by which a silicon crystal is made into wafers. This process is usually carried out by a multi-wire saw which cuts multiple wafers from the same crystal at the same time. These wafers are then polished to the desired degree of flatness and thickness.
These wafers are then polished to a mirror finish before going through photolithography. In many steps the transistors are manufactured and connected with metal interconnect layers. These prepared wafers then go through wafer testing to test their functionality. The wafers are then sliced and sorted to filter out the faulty dies.
The silicon laser is fabricated by a technique called plasma assisted wafer bonding. Silicon waveguides are first fabricated on a silicon on insulator (SOI) wafer. This SOI wafer and the un-patterned III-V wafer are then exposed to an oxygen plasma before being pressed together at a low (for semiconductor manufacturing) temperature of 300C for 12 hours.
To ensure good contact of the wafer pair a constant pressure between 2.5 and 4.5 bar during bonding is applied. [3] The frames should be kept above the non-flatness value of the wafer, based on the fact that defects usually are caused by the curvature of the wafer. [3] A shear strength of the bonded wafer pair of about 18 to 25 MPa is ...
To add to the design challenge, device properties often vary between each processed semiconductor wafer. Device properties can even vary significantly across each individual IC due to doping gradients. The underlying cause of this variability is that many semiconductor devices are highly sensitive to uncontrollable random variances in the process.