enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

  3. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    For example, if the row space is a plane through the origin in three dimensions, then the null space will be the perpendicular line through the origin. This provides a proof of the rank–nullity theorem (see dimension above). The row space and null space are two of the four fundamental subspaces associated with a matrix A (the other two being ...

  4. Linear code - Wikipedia

    en.wikipedia.org/wiki/Linear_code

    A linear code of length n and dimension k is a linear subspace C with dimension k of the vector space where is the finite field with q elements. Such a code is called a q -ary code. If q = 2 or q = 3, the code is described as a binary code , or a ternary code respectively.

  5. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    The second proof [6] looks at the homogeneous system =, where is a with rank, and shows explicitly that there exists a set of linearly independent solutions that span the null space of . While the theorem requires that the domain of the linear map be finite-dimensional, there is no such assumption on the codomain.

  6. Quotient space (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Quotient_space_(linear...

    The first isomorphism theorem for vector spaces says that the quotient space V/ker(T) is isomorphic to the image of V in W. An immediate corollary, for finite-dimensional spaces, is the rank–nullity theorem: the dimension of V is equal to the dimension of the kernel (the nullity of T) plus the dimension of the image (the rank of T).

  7. Codimension - Wikipedia

    en.wikipedia.org/wiki/Codimension

    More generally, if W is a linear subspace of a (possibly infinite dimensional) vector space V then the codimension of W in V is the dimension (possibly infinite) of the quotient space V/W, which is more abstractly known as the cokernel of the inclusion. For finite-dimensional vector spaces, this agrees with the previous definition

  8. Null space (matrix) - Wikipedia

    en.wikipedia.org/?title=Null_space_(matrix...

    Null space (matrix) Add languages. Add links. Article; Talk; ... Download QR code; Print/export Download as PDF; Printable version; In other projects

  9. Metric signature - Wikipedia

    en.wikipedia.org/wiki/Metric_signature

    The number v (resp. p) is the maximal dimension of a vector subspace on which the scalar product g is positive-definite (resp. negative-definite), and r is the dimension of the radical of the scalar product g or the null subspace of symmetric matrix g ab of the scalar product. Thus a nondegenerate scalar product has signature (v, p, 0), with v ...