Search results
Results from the WOW.Com Content Network
The Bode plotter is an electronic instrument resembling an oscilloscope, which produces a Bode diagram, or a graph, of a circuit's voltage gain or phase shift plotted against frequency in a feedback control system or a filter. An example of this is shown in Figure 10.
Inside the volume on fire control a special essay titled Data Smoothing and Prediction in Fire-Control Systems, coauthored by Ralph Beebe Blackman, Hendrik Bode, and Claude Shannon, formally introduced the problem of fire control as a special case of transmission, manipulation and utilization of intelligence, [18] [21] in other words, it ...
Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.
The major benefit achieved through this structure is iso-damping, i.e. overshoot being independent of the payload or the system gain. The usage of fractional elements for description of ideal Bode's control loop is one of the most promising applications of fractional calculus in the process control field. [3]
This page was last edited on 19 July 2005, at 14:41 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
Randles circuit schematic. In electrochemistry, a Randles circuit is an equivalent electrical circuit that consists of an active electrolyte resistance R S in series with the parallel combination of the double-layer capacitance C dl and an impedance (Z w) of a faradaic reaction.
A polytope comprises elements of different dimensionality such as vertices, edges, faces, cells and so on. Terminology for these is not fully consistent across different authors. For example, some authors use face to refer to an (n − 1)-dimensional element while others use face to denote a 2-face specifically.
In applied mathematics, mode shapes are a manifestation of eigenvectors which describe the relative displacement of two or more elements in a mechanical system [1] or wave front. [2] A mode shape is a deflection pattern related to a particular natural frequency and represents the relative displacement of all parts of a structure for that ...