Search results
Results from the WOW.Com Content Network
In physics, a projectile launched with specific initial conditions will have a range. It may be more predictable assuming a flat Earth with a uniform gravity field , and no air resistance . The horizontal ranges of a projectile are equal for two complementary angles of projection with the same velocity.
Gaussian beam width () as a function of the axial distance .: beam waist; : confocal parameter; : Rayleigh length; : total angular spread In optics and especially laser science, the Rayleigh length or Rayleigh range, , is the distance along the propagation direction of a beam from the waist to the place where the area of the cross section is doubled. [1]
The range and the maximum height of the projectile do not depend upon its mass. Hence range and maximum height are equal for all bodies that are thrown with the same velocity and direction. The horizontal range d of the projectile is the horizontal distance it has traveled when it returns to its initial height ( y = 0 {\textstyle y=0} ).
With the addition of clinometers fixed machine gun squads could set long ranges and deliver plunging fire or indirect fire at more than 2,500 m (2,730 yd). This indirect firing method exploits the maximal practical range, that is defined by the maximum range of a small-arms projectile while still maintaining the minimum kinetic energy required to put unprotected personnel out of action, which ...
The radial speed or range rate is the temporal rate of the distance or range between the two points. It is a signed scalar quantity, formulated as the scalar projection of the relative velocity vector onto the LOS direction. Equivalently, radial speed equals the norm of the radial velocity, modulo the sign. [a]
The aforementioned ballistics tables are generally: functions, air density, projectile time at range, range, degree of projectile departure, weight and diameter to facilitate the calculation of ballistic formulae. These formulae produce the projectile velocity at range, drag and trajectories.
In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a result of one or more successive collisions with other particles.
The range depends on the type of particle, on its initial energy and on the material through which it passes. For example, if the ionising particle passing through the material is a positive ion like an alpha particle or proton , it will collide with atomic electrons in the material via Coulombic interaction .