Search results
Results from the WOW.Com Content Network
Symbolic circuit analysis is a formal technique of circuit analysis to calculate the behaviour or characteristic of an electric/electronic circuit with the independent variables (time or frequency), the dependent variables (voltages and currents), and (some or all of) the circuit elements represented by symbols.
SymPy is an open-source Python library for symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3] SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies.
It can produce 2D/3D plots. FEATool Multiphysics is a Matlab GUI toolbox for finite element FEM and PDE multiphysics simulations. FEniCS Project is a collection of project for automated solutions to PDEs. Hermes is a C++ library of advanced adaptive finite element algorithms to solve PDEs and multiphysics coupled problems.
The following tables provide a comparison of computer algebra systems (CAS). [1] [2] [3] A CAS is a package comprising a set of algorithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language.
Matplotlib (portmanteau of MATLAB, plot, and library [3]) is a plotting library for the Python programming language and its numerical mathematics extension NumPy.It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK.
On a semi-log plot the spacing of the scale on the y-axis (or x-axis) is proportional to the logarithm of the number, not the number itself. It is equivalent to converting the y values (or x values) to their log, and plotting the data on linear scales. A log–log plot uses the logarithmic scale for both axes, and hence is not a semi-log plot.
For example, the definite integral over the positive real axis of any function g(x) that can be written as a product G 1 (cx γ)·G 2 (dx δ) of two G-functions with rational γ/δ equals just another G-function, and generalizations of integral transforms like the Hankel transform and the Laplace transform and their inverses result when ...
For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [19] This is the case, for example, if f(x) = x 3 − 2x + 2.