Search results
Results from the WOW.Com Content Network
Temperature profile of the Uranian troposphere and lower stratosphere. Cloud and haze layers are also indicated. The Uranian atmosphere can be divided into three main layers: the troposphere, between altitudes of −300 [a] and 50 km and pressures from 100 to 0.1 bar; the stratosphere, spanning altitudes between 50 and 4000 km and pressures between 0.1 and 10 −10 bar; and the thermosphere ...
Neptune, which is Uranus's near twin in size and composition, radiates 2.61 times as much energy into space as it receives from the Sun, [23] but Uranus radiates hardly any excess heat at all. The total power radiated by Uranus in the far infrared (i.e. heat) part of the spectrum is 1.06 ± 0.08 times the solar energy absorbed in its atmosphere .
The size of solid bodies does not include an object's atmosphere. For example, Titan looks bigger than Ganymede, but its solid body is smaller. For the giant planets, the "radius" is defined as the distance from the center at which the atmosphere reaches 1 bar of atmospheric pressure. [11]
Uranus, blue-green in color due to the methane contained in an atmosphere comprised mostly of hydrogen and helium, has a diameter of about 31,500 miles (50,700 km). It is big enough to fit 63 ...
The atmosphere of Uranus is composed primarily of gas and various ices. It is about 83% hydrogen, 15% helium, 2% methane and traces of acetylene. Like Jupiter and Saturn, Uranus has a banded cloud layer, although this is not readily visible without enhancement of visual images of the planet.
One year on Uranus lasts around 84 Earth years, and for about a quarter of the Uranian year, the sun shines directly over one of the planet’s poles, which means the other half of Uranus ...
The exoplanet has exceedingly low density for its size, an international team reported Tuesday. The gas giants in our solar system — Jupiter, Saturn, Uranus and Neptune — are much denser.
The composition of Jupiter's atmosphere is similar to that of the planet as a whole. [1] Jupiter's atmosphere is the most comprehensively understood of those of all the giant planets because it was observed directly by the Galileo atmospheric probe when it entered the Jovian atmosphere on December 7, 1995. [28]