enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton , [ 1 ] Hamiltonian mechanics replaces (generalized) velocities q ˙ i {\displaystyle {\dot {q}}^{i}} used in Lagrangian mechanics with (generalized) momenta .

  3. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  4. Classical mechanics - Wikipedia

    en.wikipedia.org/wiki/Classical_mechanics

    Classical mechanics was traditionally divided into three main branches. Statics is the branch of classical mechanics that is concerned with the analysis of force and torque acting on a physical system that does not experience an acceleration, but rather is in equilibrium with its environment. [3]

  5. Hamilton–Jacobi equation - Wikipedia

    en.wikipedia.org/wiki/Hamilton–Jacobi_equation

    In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

  6. Poisson bracket - Wikipedia

    en.wikipedia.org/wiki/Poisson_bracket

    In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system.

  7. Generating function (physics) - Wikipedia

    en.wikipedia.org/wiki/Generating_function_(physics)

    This turns the Hamiltonian into = +, which is in the form of the harmonic oscillator Hamiltonian. The generating function F for this transformation is of the third kind, = (,). To find F explicitly, use the equation for its derivative from the table above,

  8. Liouville's theorem (Hamiltonian) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics.It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time.

  9. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Emmy Noether, whose 1915 proof of a celebrated theorem that relates symmetries and conservation laws was a key development in modern physics and can be conveniently stated in the language of Lagrangian or Hamiltonian mechanics. In Hamiltonian mechanics, the dynamics of a system are represented by a function called the Hamiltonian, which in many ...