enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    A smooth manifold endowed with a Riemannian metric is a Riemannian manifold, denoted (,). [3] A Riemannian metric is a special case of a metric tensor. A Riemannian metric is not to be confused with the distance function of a metric space, which is also called a metric.

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...

  4. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.

  5. Metric tensor - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor

    A metric tensor g is positive-definite if g(v, v) > 0 for every nonzero vector v. A manifold equipped with a positive-definite metric tensor is known as a Riemannian manifold. Such a metric tensor can be thought of as specifying infinitesimal distance on the manifold.

  6. Fisher information metric - Wikipedia

    en.wikipedia.org/wiki/Fisher_information_metric

    In information geometry, the Fisher information metric [1] is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability distributions. It can be used to calculate the distance between probability distributions. [2] The metric is interesting in several aspects.

  7. Glossary of Riemannian and metric geometry - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_Riemannian_and...

    Riemannian submanifold A differentiable sub-manifold whose Riemannian metric is the restriction of the ambient Riemannian metric (not to be confused with sub-Riemannian manifold). Riemannian submersion is a map between Riemannian manifolds which is submersion and submetry at the same time.

  8. Normal coordinates - Wikipedia

    en.wikipedia.org/wiki/Normal_coordinates

    If the additional structure of a Riemannian metric is imposed, then the basis defined by E may be required in addition to be orthonormal, and the resulting coordinate system is then known as a Riemannian normal coordinate system. Normal coordinates exist on a normal neighborhood of a point p in M.

  9. Conformal geometry - Wikipedia

    en.wikipedia.org/wiki/Conformal_geometry

    A representative Riemannian metric on the sphere is a metric which is proportional to the standard sphere metric. This gives a realization of the sphere as a conformal manifold. The standard sphere metric is the restriction of the Euclidean metric on R n+1 = + + + +