Search results
Results from the WOW.Com Content Network
Nylander's test is a chemical test used for detecting the presence of reducing sugars. Glucose or fructose reduces bismuth oxynitrate to bismuth under alkaline conditions. When Nylander's reagent, which consists of bismuth nitrate, potassium sodium tartrate and potassium hydroxide, is added to a solution with reducing sugars, a black precipitate of metallic bismuth is formed.
Nitrosyl chloride is the chemical compound with the formula NOCl. It is a yellow gas that is commonly encountered as a component of aqua regia, a mixture of 3 parts concentrated hydrochloric acid and 1 part of concentrated nitric acid.
Unlike most chemical reactions, the product C converts to a further product, which is produced in an electronically excited state often indicated with an asterisk: A + B → C C → D* D* then emits a photon (hν), to give the ground state of D: [1] I D* → D + hν. In theory, one photon of light should be given off for each molecule of reactant.
Formation of a secondary alcohol via alkene reduction and hydration is shown: The hydroboration-oxidation and oxymercuration-reduction of alkenes are more reliable in organic synthesis. Alkenes react with N-bromosuccinimide and water in halohydrin formation reaction. Amines can be converted to diazonium salts, which are then hydrolyzed.
2,4,6-Trichlorobenzoyl chloride or Yamaguchi's reagent is an chlorinated aromatic compound that is commonly used in a variety of organic syntheses. [ 2 ] [ 3 ] Yamaguchi esterification
Oxidation of alcohol to aldehyde with TPAP (0.06 eq.) and N-methylmorpholine N-oxide (1.7 eq.) with molecular sieves in dichloromethane. [1]Ruthenium tetroxide is a highly aggressive oxidant, but TPAP, which is its one-electron reduced derivative, is a mild oxidizing agent for the conversion of primary alcohols to aldehydes (the Ley oxidation). [2]
Photochemical immersion well reactor (50 mL) with a mercury-vapor lamp.. Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet (wavelength from 100 to 400 nm), visible (400–750 nm), or infrared radiation (750–2500 nm).
In organic chemistry, alkynylation is an addition reaction in which a terminal alkyne (−C≡CH) is added to a carbonyl group (C=O) to form an α-alkynyl alcohol (R 2 C(−OH)−C≡C−R). [1] [2] When the acetylide is formed from acetylene (HC≡CH), the reaction gives an α-ethynyl alcohol. This process is often referred to as ethynylation.