Search results
Results from the WOW.Com Content Network
TSP is a programming language for the estimation and simulation of econometric models. TSP stands for "Time Series Processor", although it is also commonly used with cross section and panel data. The program was initially developed by Robert Hall during his graduate studies at Massachusetts Institute of Technology in the 1960s. [1]
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
The Concorde TSP Solver is a program for solving the travelling salesman problem. It was written by David Applegate , Robert E. Bixby , Vašek Chvátal , and William J. Cook , in ANSI C , and is freely available for academic use.
In an asymmetric bottleneck TSP, there are cases where the weight from node A to B is different from the weight from B to A (e. g. travel time between two cities with a traffic jam in one direction). The Euclidean bottleneck TSP, or planar bottleneck TSP, is the bottleneck TSP with the distance being the ordinary Euclidean distance. The problem ...
There are many methods to solve vehicle routing problems manually. For example, optimum routing is a big efficiency issue for forklifts in large warehouses. Some of the manual methods to decide upon the most efficient route are: Largest gap, S-shape, Aisle-by-aisle, Combined and Combined +.
The Steiner traveling salesman problem (Steiner TSP, or STSP) is an extension of the traveling salesman problem. Given a list of cities, some of which are required, and the lengths of the roads between them, the goal is to find the shortest possible walk that visits each required city and then returns to the origin city. [ 1 ]
The cost of the solution produced by the algorithm is within 3/2 of the optimum. To prove this, let C be the optimal traveling salesman tour. Removing an edge from C produces a spanning tree, which must have weight at least that of the minimum spanning tree, implying that w(T) ≤ w(C) - lower bound to the cost of the optimal solution.
In combinatorial optimization, the set TSP, also known as the generalized TSP, group TSP, One-of-a-Set TSP, Multiple Choice TSP or Covering Salesman Problem, is a generalization of the traveling salesman problem (TSP), whereby it is required to find a shortest tour in a graph which visits all specified subsets of the vertices of a graph.