Search results
Results from the WOW.Com Content Network
High-temperature corrosion is a mechanism of corrosion that takes place when gas turbines, diesel engines, furnaces or other machinery come in contact with hot gas containing certain contaminants. Fuel sometimes contains vanadium compounds or sulfates, which can form low melting point compounds during combustion.
mild steel cracks in the presence of alkali (e.g. boiler cracking and caustic stress corrosion cracking) and nitrates; copper alloys crack in ammoniacal solutions ( season cracking ); high-tensile steels have been known to crack in an unexpectedly brittle manner in a whole variety of aqueous environments, especially when chlorides are present.
Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture.Rust consists of hydrous iron(III) oxides (Fe 2 O 3 ·nH 2 O) and iron(III) oxide-hydroxide (FeO(OH), Fe(OH) 3), and is typically associated with the corrosion of refined iron.
An industrial furnace, also known as a direct heater or a direct fired heater, is a device used to provide heat for an industrial process, typically higher than 400 degrees Celsius. [1] They are used to provide heat for a process or can serve as reactor which provides heats of reaction.
Common applications are: steel water or fuel pipelines and steel storage tanks such as home water heaters; steel pier piles; ship and boat hulls; offshore oil platforms and onshore oil well casings; offshore wind farm foundations and metal reinforcement bars in concrete buildings and structures.
Flow-accelerated corrosion (FAC), also known as flow-assisted corrosion, is a corrosion mechanism in which a normally protective oxide layer on a metal surface dissolves in a fast flowing water. The underlying metal corrodes to re-create the oxide, and thus the metal loss continues.
Corrosion engineering is an engineering specialty that applies scientific, technical, engineering skills, and knowledge of natural laws and physical resources to design and implement materials, structures, devices, systems, and procedures to manage corrosion. [1]
In brief, corrosion is a chemical reaction occurring by an electrochemical mechanism (a redox reaction). [1] During corrosion of iron or steel there are two reactions, oxidation (equation 1), where electrons leave the metal (and the metal dissolves, i.e. actual loss of metal results) and reduction, where the electrons are used to convert oxygen and water to hydroxide ions (equation 2): [2]