enow.com Web Search

  1. Ads

    related to: solving life problems involving area of polygons and sides practice

Search results

  1. Results from the WOW.Com Content Network
  2. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The quotients formed by the area of these polygons divided by the square of the circle radius can be made arbitrarily close to π as the number of polygon sides becomes large, proving that the area inside the circle of radius r is πr 2, π being defined as the ratio of the circumference to the diameter (C/d).

  3. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...

  4. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    [2]: p. 1 They could also construct half of a given angle, a square whose area is twice that of another square, a square having the same area as a given polygon, and regular polygons of 3, 4, or 5 sides [2]: p. xi (or one with twice the number of sides of a given polygon [2]: pp. 49–50 ).

  5. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  6. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [11]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.

  7. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  8. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    The Delian problem, for instance, was to construct a length x so that the cube of side x contained the same volume as the rectangular box a 2 b for given sides a and b. Menaechmus (c. 350 BC) considered the problem geometrically by intersecting the pair of plane conics ay = x 2 and xy = ab. [2]

  9. Wallace–Bolyai–Gerwien theorem - Wikipedia

    en.wikipedia.org/wiki/Wallace–Bolyai–Gerwien...

    A general approach that works for non-simple polygons as well would be to choose a line not parallel to any of the sides of the polygon and draw a line parallel to this one through each of the vertices of the polygon. This will divide the polygon into triangles and trapezoids, which in turn can be converted into triangles.

  1. Ads

    related to: solving life problems involving area of polygons and sides practice