enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  3. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    Fanning friction factor for tube flow. This friction factor is one-fourth of the Darcy friction factor, so attention must be paid to note which one of these is meant in the "friction factor" chart or equation consulted. Of the two, the Fanning friction factor is the more commonly used by chemical engineers and those following the British ...

  4. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Most charts or tables indicate the type of friction factor, or at least provide the formula for the friction factor with laminar flow. If the formula for laminar flow is f = ⁠ 16 / Re ⁠ , it is the Fanning factor f , and if the formula for laminar flow is f D = ⁠ 64 / Re ⁠ , it is the Darcy–Weisbach factor f D .

  5. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    In this article, the following conventions and definitions are to be understood: The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density.

  6. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    Assuming the Fanning friction factor is a constant along the duct wall, the differential equation can be solved easily. [ 2 ] [ 3 ] One must keep in mind, however, that the value of the Fanning friction factor can be difficult to determine for supersonic and especially hypersonic flow velocities.

  7. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as =, where Q is the rate of flow (expressed in US gallons per minute), SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi).

  8. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    The friction loss is customarily given as pressure loss for a given duct length, Δp / L, in units of (US) inches of water for 100 feet or (SI) kg / m 2 / s 2. For specific choices of duct material, and assuming air at standard temperature and pressure (STP), standard charts can be used to calculate the expected friction loss.

  9. Pressure drop - Wikipedia

    en.wikipedia.org/wiki/Pressure_drop

    Pressure drop (often abbreviated as "dP" or "ΔP") [1] is defined as the difference in total pressure between two points of a fluid carrying network. A pressure drop occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through a conduit (such as a channel, pipe , or tube ).