Search results
Results from the WOW.Com Content Network
Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often ...
Kernel (linear algebra) or null space, a set of vectors mapped to the zero vector; Kernel (category theory), a generalization of the kernel of a homomorphism; Kernel (set theory), an equivalence relation: partition by image under a function; Difference kernel, a binary equalizer: the kernel of the difference of two functions
The Mathematical principles should be in the Kernel Models page. my 2 cents. — Preceding unsigned comment added by 76.21.11.140 01:55, 5 June 2013 (UTC) I like the tone of the article. It offers a direct statement of what the "Kernel Trick" is in a way that is easy to grasp.
To avoid solving a linear system involving the large kernel matrix, a low-rank approximation to the matrix is often used in the kernel trick. Another common method is Platt's sequential minimal optimization (SMO) algorithm, which breaks the problem down into 2-dimensional sub-problems that are solved analytically, eliminating the need for a ...
Because support vector machines and other models employing the kernel trick do not scale well to large numbers of training samples or large numbers of features in the input space, several approximations to the RBF kernel (and similar kernels) have been introduced. [4]
In a typical document classification task, the input to the machine learning algorithm (both during learning and classification) is free text. From this, a bag of words (BOW) representation is constructed: the individual tokens are extracted and counted, and each distinct token in the training set defines a feature (independent variable) of each of the documents in both the training and test sets.
Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.
Kernel methods are a well-established tool to analyze the relationship between input data and the corresponding output of a function. Kernels encapsulate the properties of functions in a computationally efficient way and allow algorithms to easily swap functions of varying complexity.