Search results
Results from the WOW.Com Content Network
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
When the intersection is internal, the equality states that the product of the segment lengths into which E divides one diagonal equals that of the other diagonal. This is known as the intersecting chords theorem since the diagonals of the cyclic quadrilateral are chords of the circumcircle.
The constant chord theorem is a statement in elementary geometry about a property of certain chords in two intersecting circles. The circles k 1 {\displaystyle k_{1}} and k 2 {\displaystyle k_{2}} intersect in the points P {\displaystyle P} and Q {\displaystyle Q} .
Using the intersecting chords theorem (also known as power of a point or secant tangent theorem) it is possible to calculate the radius r of a circle given the height H and the width W of an arc: Consider the chord with the same endpoints as the arc. Its perpendicular bisector is another chord, which is a diameter of the circle.
Know better, bake better!
In mathematics, the n th Motzkin number is the number of different ways of drawing non-intersecting chords between n points on a circle (not necessarily touching every point by a chord). The Motzkin numbers are named after Theodore Motzkin and have diverse applications in geometry , combinatorics and number theory .