Search results
Results from the WOW.Com Content Network
Nuclear gene location. A nuclear gene is a gene that has its DNA nucleotide sequence physically situated within the cell nucleus of a eukaryotic organism. This term is employed to differentiate nuclear genes, which are located in the cell nucleus, from genes that are found in mitochondria or chloroplasts. The vast majority of genes in ...
Nutritional genomics, also known as nutrigenomics, is a science studying the relationship between human genome, human nutrition and health. People in the field work toward developing an understanding of how the whole body responds to a food via systems biology, as well as single gene/single food compound relationships.
This is a list of gene families or gene complexes, i.e. sets of genes which are related ancestrally and often serve similar biological functions.These gene families typically encode functionally related proteins, and sometimes the term gene families is a shorthand for the sets of proteins that the genes encode.
Deoxyribonucleic acid (DNA) is a nucleic acid containing the genetic instructions used in the development and functioning of all known living organisms. The chemical DNA was discovered in 1869, but its role in genetic inheritance was not demonstrated until 1943. The DNA segments that carry this genetic information are called genes.
Phylogenetic tree of the Mup gene family. A gene family is a set of several similar genes, formed by duplication of a single original gene, and generally with similar biochemical functions. One such family are the genes for human hemoglobin subunits; the ten genes are in two clusters on different chromosomes, called the α-globin and β-globin loci
The genetic code was once believed to be universal: [20] a codon would code for the same amino acid regardless of the organism or source. However, it is now agreed that the genetic code evolves, [21] resulting in discrepancies in how a codon is translated depending on the genetic source.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
These elements have a big potential to modify the genetic control in a host organism. [37] The movement of TEs is a driving force of genome evolution in eukaryotes because their insertion can disrupt gene functions, homologous recombination between TEs can produce duplications, and TE can shuffle exons and regulatory sequences to new locations ...