enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    On the other hand the Nash embedding theorem implies that hyperbolic n-space can be isometrically embedded into some Euclidean space of larger dimension (5 for the hyperbolic plane by the Nash embedding theorem). When isometrically embedded to a Euclidean space every point of a hyperbolic space is a saddle point.

  3. Poincaré half-plane model - Wikipedia

    en.wikipedia.org/wiki/Poincaré_half-plane_model

    The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...

  4. Poincaré metric - Wikipedia

    en.wikipedia.org/wiki/Poincaré_metric

    It is the natural metric commonly used in a variety of calculations in hyperbolic geometry or Riemann surfaces. There are three equivalent representations commonly used in two-dimensional hyperbolic geometry. One is the Poincaré half-plane model, defining a model of hyperbolic space on the upper half-plane.

  5. Space form - Wikipedia

    en.wikipedia.org/wiki/Space_form

    In mathematics, a space form is a complete Riemannian manifold M of constant sectional curvature K. The three most fundamental examples are Euclidean n -space , the n -dimensional sphere , and hyperbolic space , although a space form need not be simply connected .

  6. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    However, the entire hyperbolic plane cannot be embedded into Euclidean space in this way, and various other models are more convenient for abstractly exploring hyperbolic geometry. There are four models commonly used for hyperbolic geometry: the Klein model , the Poincaré disk model , the Poincaré half-plane model , and the Lorentz or ...

  7. M-theory - Wikipedia

    en.wikipedia.org/wiki/M-theory

    Now imagine a stack of hyperbolic disks where each disk represents the state of the universe at a given time. The resulting geometric object is three-dimensional anti-de Sitter space. [52] It looks like a solid cylinder in which any cross section is a copy of the hyperbolic disk. Time runs along the vertical direction in this picture.

  8. 10 Over-the-Top Christmas Decorations That Cost a Fortune - AOL

    www.aol.com/10-over-top-christmas-decorations...

    Image Credit: Greg Zimmerman/ YouTube Every year, California resident Greg Zimmerman participates in the Newport Beach Christmas Boat Parade by decorating his houseboat with over 24,000 lights.

  9. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    From Gyrovector space#Triangle centers. The study of triangle centers traditionally is concerned with Euclidean geometry, but triangle centers can also be studied in hyperbolic geometry. Using gyrotrigonometry, expressions for trigonometric barycentric coordinates can be calculated that have the same form for both euclidean and hyperbolic geometry.