Ad
related to: how to show differentiability formula in excel sheet with two
Search results
Results from the WOW.Com Content Network
Let be a function in the Lebesgue space ([,]).We say that in ([,]) is a weak derivative of if ′ = ()for all infinitely differentiable functions with () = =.. Generalizing to dimensions, if and are in the space () of locally integrable functions for some open set, and if is a multi-index, we say that is the -weak derivative of if
A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. If x 0 is an interior point in the domain of a function f , then f is said to be differentiable at x 0 if the derivative f ′ ( x 0 ) {\displaystyle f'(x_{0})} exists.
Constantin Carathéodory's alternative definition of the differentiability of a function can be used to give an elegant proof of the chain rule. [6] Under this definition, a function f is differentiable at a point a if and only if there is a function q, continuous at a and such that f(x) − f(a) = q(x)(x − a).
A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing , and the limit = (+) exists. [2] This means that, for every positive real number , there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.
The implicit function theorem of more than two real variables deals with the continuity and differentiability of the function, as follows. [4] Let ϕ(x 1, x 2, …, x n) be a continuous function with continuous first order partial derivatives, and let ϕ evaluated at a point (a, b) = (a 1, a 2, …, a n, b) be zero:
If a real-valued, differentiable function f, defined on an interval I of the real line, has zero derivative everywhere, then it is constant, as an application of the mean value theorem shows. The assumption of differentiability can be weakened to continuity and one-sided differentiability of f. The version for right differentiable functions is ...
To be a C r-loop, the function γ must be r-times continuously differentiable and satisfy γ (k) (a) = γ (k) (b) for 0 ≤ k ≤ r. The parametric curve is simple if | (,): (,) is injective. It is analytic if each component function of γ is an analytic function, that is, it is of class C ω.
If f(x) is a real-valued function and a and b are numbers with a < b, then the mean value theorem says that under mild hypotheses, the slope between the two points (a, f(a)) and (b, f(b)) is equal to the slope of the tangent line to f at some point c between a and b. In other words, ′ = ().
Ad
related to: how to show differentiability formula in excel sheet with two