enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The stress due to shear force is maximum along the neutral axis of the beam (when the width of the beam, t, is constant along the cross section of the beam; otherwise an integral involving the first moment and the beam's width needs to be evaluated for the particular cross section), and the maximum tensile stress is at either the top or bottom ...

  3. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Simply supported beam with a single eccentric concentrated load. An illustration of the Macaulay method considers a simply supported beam with a single eccentric concentrated load as shown in the adjacent figure. The first step is to find . The reactions at the supports A and C are determined from the balance of forces and moments as

  4. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]

  5. Cantilever method - Wikipedia

    en.wikipedia.org/wiki/Cantilever_method

    The cantilever method is an approximate method for calculating shear forces and moments developed in beams and columns of a frame or structure due to lateral loads. The applied lateral loads typically include wind loads and earthquake loads, which must be taken into consideration while designing buildings.

  6. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    Simple beam bending is often analyzed with the Euler–Bernoulli beam equation. The conditions for using simple bending theory are: [4] The beam is subject to pure bending. This means that the shear force is zero, and that no torsional or axial loads are present. The material is isotropic (or orthotropic) and homogeneous.

  7. Flexural strength - Wikipedia

    en.wikipedia.org/wiki/Flexural_strength

    Fig. 3 - Beam under 3 point bending. For a rectangular sample under a load in a three-point bending setup (Fig. 3), starting with the classical form of maximum bending stress: = M is the moment in the beam; c is the maximum distance from the neutral axis to the outermost fiber in the bending plane

  8. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    The bending stiffness is the resistance of a member against bending deflection/deformation. It is a function of the Young's modulus E {\displaystyle E} , the second moment of area I {\displaystyle I} of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.

  9. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    A cantilever Timoshenko beam under a point load at the free end For a cantilever beam , one boundary is clamped while the other is free. Let us use a right handed coordinate system where the x {\displaystyle x} direction is positive towards right and the z {\displaystyle z} direction is positive upward.