enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    If a Markov chain has a stationary distribution, then it can be converted to a measure-preserving dynamical system: Let the probability space be =, where is the set of all states for the Markov chain. Let the sigma-algebra on the probability space be generated by the cylinder sets.

  3. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.

  4. Discrete-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Markov_chain

    A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.

  5. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    Intuitively, a stochastic matrix represents a Markov chain; the application of the stochastic matrix to a probability distribution redistributes the probability mass of the original distribution while preserving its total mass. If this process is applied repeatedly, the distribution converges to a stationary distribution for the Markov chain.

  6. Markov Chains and Mixing Times - Wikipedia

    en.wikipedia.org/wiki/Markov_Chains_and_Mixing_Times

    A Markov chain is a stochastic process defined by a set of states and, for each state, a probability distribution on the states. Starting from an initial state, it follows a sequence of states where each state in the sequence is chosen randomly from the distribution associated with the previous state.

  7. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state. An example use of a Markov chain is Markov chain Monte Carlo, which uses the Markov property to prove that a particular method for performing a random walk will sample from the joint distribution.

  8. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix.

  9. Matrix analytic method - Wikipedia

    en.wikipedia.org/wiki/Matrix_analytic_method

    In probability theory, the matrix analytic method is a technique to compute the stationary probability distribution of a Markov chain which has a repeating structure (after some point) and a state space which grows unboundedly in no more than one dimension.