Search results
Results from the WOW.Com Content Network
The angle of incidence, in geometric optics, is the angle between a ray incident on a surface and the line perpendicular (at 90 degree angle) to the surface at the point of incidence, called the normal. The ray can be formed by any waves, such as optical, acoustic, microwave, and X-ray. In the figure below, the line representing a ray makes an ...
The refracted ray or transmitted ray corresponding to a given incident ray represents the light that is transmitted through the surface. The angle between this ray and the normal is known as the angle of refraction , and it is given by Snell's law .
Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances. The simplifying assumptions of geometrical optics include that light rays:
The plane of incidence is defined by the incoming radiation's propagation vector and the normal vector of the surface. In describing reflection and refraction in optics, the plane of incidence (also called the incidence plane or the meridional plane [citation needed]) is the plane which contains the surface normal and the propagation vector of the incoming radiation. [1]
By Fresnel's sine law, r s is positive for all angles of incidence with a transmitted ray (since θ t > θ i for dense-to-rare incidence), giving a phase shift δ s of zero. But, by his tangent law, r p is negative for small angles (that is, near normal incidence), and changes sign at Brewster's angle, where θ i and θ t are complementary.
The rendering equation describes the total amount of light emitted from a point x along a particular viewing direction, given a function for incoming light and a BRDF.. In computer graphics, the rendering equation is an integral equation in which the equilibrium radiance leaving a point is given as the sum of emitted plus reflected radiance under a geometrical optics approximation.
Reflective caustic generated from a circle and parallel rays. On one side, each point is contained in three light rays; on the other side, each point is contained in one light ray. In differential geometry, a caustic is the envelope of rays either reflected or refracted by a manifold. It is related to the concept of caustics in geometric optics ...
Reflection of light is either specular (mirror-like) or diffuse (retaining the energy, but losing the image) depending on the nature of the interface.In specular reflection the phase of the reflected waves depends on the choice of the origin of coordinates, but the relative phase between s and p (TE and TM) polarizations is fixed by the properties of the media and of the interface between them.