Search results
Results from the WOW.Com Content Network
Calculation of the area of a square whose length and width are 1 metre would be: 1 metre × 1 metre = 1 m 2. and so, a rectangle with different sides (say length of 3 metres and width of 2 metres) would have an area in square units that can be calculated as: 3 metres × 2 metres = 6 m 2. This is equivalent to 6 million square millimetres.
Because it is a regular polygon, a square is the quadrilateral of least perimeter enclosing a given area. Dually, a square is the quadrilateral containing the largest area within a given perimeter. [6] Indeed, if A and P are the area and perimeter enclosed by a quadrilateral, then the following isoperimetric inequality holds:
A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden.
The square gets sent to a rectangle circumscribing the ellipse. The ratio of the area of the circle to the square is π /4, which means the ratio of the ellipse to the rectangle is also π /4. Suppose a and b are the lengths of the major and minor axes of the ellipse. Since the area of the rectangle is ab, the area of the ellipse is π ab/4.
The hydraulic diameter is the equivalent circular configuration with the same circumference as the wetted perimeter. The area of a circle of radius R is . Given the area of a non-circular object A, one can calculate its area-equivalent radius by setting = or, alternatively:
Heron's formula is a special case of Brahmagupta's formula for the area of a cyclic quadrilateral. Heron's formula and Brahmagupta's formula are both special cases of Bretschneider's formula for the area of a quadrilateral. Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the ...
Heron's formula for the area of a triangle is the special case obtained by taking d = 0. The relationship between the general and extended form of Brahmagupta's formula is similar to how the law of cosines extends the Pythagorean theorem .
An area cannot be equal to a length except relative to a particular unit of measurement. For example, if shape has an area of 5 square yards and a perimeter of 5 yards, then it has an area of 45 square feet (4.2 m 2) and a perimeter of 15 feet (since 3 feet = 1 yard and hence 9 square feet = 1 square yard).