Search results
Results from the WOW.Com Content Network
Knowledge of surface ocean currents is essential in reducing costs of shipping, since traveling with them reduces fuel costs. In the wind powered sailing-ship era, knowledge of wind patterns and ocean currents was even more essential. Using ocean currents to help their ships into harbor and using currents such as the gulf stream to get back ...
A summary of the path of the thermohaline circulation. Blue paths represent deep-water currents, while red paths represent surface currents. Thermohaline circulation. Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.
Drifters are typically either surface drifters, or deepwater drifters. Surface drifters remain in top meter of the water column, and deepwater drifters are suspended approximately 15 meters below the water surface [6] to track sub-surface currents. [7] Both types measure currents in the upper ocean.
A summary of the path of the thermohaline circulation. Blue paths represent deep-water currents, while red paths represent surface currents. The NADW is not the deepest water layer in the Atlantic Ocean; the Antarctic bottom water (AABW) is always the densest, deepest ocean layer in any basin deeper than 4,000 metres (2.5 mi). [27]
Winds are the main source of energy for ocean circulation, and Ekman transport is a component of wind-driven ocean current. [1] Ekman transport occurs when ocean surface waters are influenced by the friction force acting on them via the wind.
A geostrophic current may also be thought of as a rotating shallow water wave with a frequency of zero. The principle of geostrophy or geostrophic balance is useful to oceanographers because it allows them to infer ocean currents from measurements of the sea surface height (by combined satellite altimetry and gravimetry ) or from vertical ...
Open ocean convection is a process in which the mesoscale ocean circulation and large, strong winds mix layers of water at different depths. Fresher water lying over the saltier or warmer over the colder leads to the stratification of water, or its separation into layers.
Winds drive ocean currents in the upper 100 meters of the ocean's surface. However, ocean currents also flow thousands of meters below the surface. These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature (thermo) and salinity (haline). This process is known as thermohaline circulation.