Search results
Results from the WOW.Com Content Network
For Ni-based single-crystal superalloys, upwards of ten different kinds of alloying additions can be seen to improve creep-resistance and overall mechanical properties. [46] Alloying elements include Cr, Co, Al, Mo, W, Ti, Ta, Re, and Ru.
In nickel-based superalloys, regions of Ni 3 Al (called γ' phase) precipitate out of the nickel-rich matrix (called γ phase) to give high strength and creep resistance. Many alloy formulations are available and they usually include other elements, such as chromium, molybdenum, and iron, in order to improve various properties.
Directional solidification is the preferred technique for casting high temperature nickel-based superalloys that are used in turbine engines of aircraft. Some microstructural problems such as coarse dendritic structure, long dendrite side branches, and porosity hinder the full potential of single crystal ni-based alloys. [6]
Inconel Alloy 625 (UNS designation N06625) is a nickel-based superalloy that possesses high strength properties and resistance to elevated temperatures. It also demonstrates remarkable protection against corrosion and oxidation.
Inconel is a nickel-chromium-based superalloy often utilized in extreme environments where components are subjected to high temperature, pressure or mechanical loads. Inconel alloys are oxidation- and corrosion-resistant. When heated, Inconel forms a thick, stable, passivating oxide layer protecting the surface from further attack.
Nimonic alloys typically consist of more than 50% nickel and 20% chromium with additives such as titanium and aluminium. The main use is in gas turbine components and extremely high performance reciprocating internal combustion engines.
Therefore, the precise control of grain size in nickel-based superalloys is key to creep resistance and mechanical reliability and longevity. Some ways to control the grain size lie in the manufacturing techniques like directional solidification and single crystal casting. [12]
Alloys of nickel are the most common but includes iron aluminum alloys. [1] Applications include high temperature turbine blades and heat exchanger tubing, [2] while steels are used in nuclear applications. [3] ODS materials are used on spacecraft to protect the vehicle, especially during re-entry. Noble metal ODS alloys, for example, platinum ...