Search results
Results from the WOW.Com Content Network
In probability theory, an elementary event, also called an atomic event or sample point, is an event which contains only a single outcome in the sample space. [1] Using set theory terminology, an elementary event is a singleton. Elementary events and their corresponding outcomes are often written interchangeably for simplicity, as such an event ...
A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3] An event consisting of only a single outcome is called an elementary event or an atomic event; that is, it is a singleton set.
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
The same term can also be used more informally to refer to something "standard" or "classic". For example, one might say that Euclid's proof is the "canonical proof" of the infinitude of primes. There are two canonical proofs that are always used to show non-mathematicians what a mathematical proof is like:
The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...
For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements: [1] [2] A sample space, , which is the set of all possible outcomes. An event space, which is a set of events, , an event being a set of outcomes in the sample space.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive ...